
8

The Research Monograph Series in Computing, Electrical & Communication Networks
Vol. 1 (01), April 2023, pp. 8–15

CHAPTER 2

PROBLEM FORMULATION

2.1 OVERVIEW

Several new approaches have been analyzing software performance from
the beginning of the lifecycle and problem of analyzing. Software artifacts
have gained the need of automation in the generation of performance
models. It plays a crucial role in the whole domain as automation acts as
a key factor in overcoming problems. Short time to market and specific
skills in view of building models which are trustworthy. Software artifacts
have been automatically transferred into performance models with
the introduction of numerous approaches. This has led the automated
generation of models to be treated as a quite nature discipline in the
software performance on the other hand other problems remain as key
points for a complete automation mechanism in this domain. In order to
use a complete performance modeling and analysis process, some typical
steps need to be schematically represented in Figure 2.1 executed at a
certain point of the software life cycle.

A round box and a square box represented in the Figure 2.1 are
operational steps, the input and the output data respectively. All the
way through the production of performance indices of interest, forward
path is represented from 1 through 4 from an annotated software model.
While this path exposes introducing well founded approaches inducing
automation in all steps the backward path bringing the analysis result
back to the software model make it clear that there is lack of automation
in the backward path.

The result interpretations are the main steps of the backward path
feedback generation. In Figure 2.1, the possible inputs to core steps are
through performance indices and annotated architectural model are
represented by all arrows labeled as 5 and based on this information
problems in the architectural model are searched. In order to detect
performance flows, the performances indices which are obtained from
this model solution are interpreted in this first step. With certain accuracy
in some performance flows have been detected somewhere in the model
removing this solution with their respective applications. These solutions

 Problem Formulation 9

are also found in design alternatives in the flow of feed track which
modifies the original software model for achieving better performance.
There can be no change on the software model of all performance
requirements are satisfied and so feedback suggest no change in it.

2.1.1 Automated Software Performance Model

It is really interesting to know the extent of grips with the performance
issues in real organizations such as Information Technology industry and
many centers around performance management. 150 senior managers
are responsible for testing the performance and working at large
organizations across Europe have been limited to fill a questionnaire
continuing about the experience in the field. According to the survey
more than half of organizations experience unexpected performance
issues in 20 percent of role of their deployed application and the
prevalence of performance failures in many organizations. Reactive
approach to performance during the development places (Balsamo S.
et al., 2004) is the prime cause of performance failures. Project managers
who are pressurized by cost and schedule adopt to fix it later approach in
which performance is ignored all together till the problem arises.

Once the problem is detected then it needs more effort and the
developers should try to meet performance objectives as well as the
software but sometimes training may not help to reach performance
objectives in some cases. It means that it is better to avoid project crisis
occurring through performance failures. A proactive approach to

(Annotated) Software
Architectural Model

Model2model
Transformation

Performance
Model

Model solution

Performance
Result

Results Interpretation Feedback
Generation

Designing

Analyzing the Performances

Recapturing

1

2
3

4

5.b

5.a

6

Figure 2.1 Processing Details of Automated Software Performance.

10 Refactoring of Software Architectural Design for Performance Optimization

software performance management enables to identify the problems early
in the process as it is based on these related techniques. This provides
solution for a software development, to avoid project crises due to the
delay in spotting performance issues.

The usage of resources and its contention affects operations that are
described by a performance model (Jenson H. et al., 2000). Prediction
of the properties of a system by a performance model is supported by
the solution of a model before it is built and the change is carried out
which gives a warning role to early modeling. Many accurate models can
however be created along with the proceedings of implementation by
using other means which provide with additional advantages particularly,

i) Design of performance tests.
ii) Configuration of products for delivery.
iii) Evaluation of planned evolutions of the design where these is

no final system, describing all the aspects of a software system
e.g. queuing networks, layered queues (Franks G. et al., 2009),
stochastic Petri nets, process algebras, etc.

Performance results can be identified for the following performance
indices. The time interval between a user request of a service and the
response of the system is defined as the response time. End users of the
system define upper bounds, usually in “business” requirements. Ratio
of busy time of a resource and the total elapsed time of the measurement
period is defined as utilization. On the basis of their experience, scalability
issues or constraints which are introduced by other concurrent software
systems sharing the same platform define upper bounds in system
requirements. System handling requests measures it per time which refers
to through put defined as the rate. This depends on the application of it
target for which with the same motivation, an upper or a lower hand can
be represented. When the estimated response time of a service being higher
than the required one hence the performance problem originates from a
set of unfulfilled requirements. No changes are suggested by feedback if all
requirements are fulfilled in Figure 2.1, the inputs are the annotated software
architectural model (label 5.a) and the performance results (label 5.b) to the
core step, searching problems in the model. Searching of problems related
to performance in architectural model is filled with complexity which needs
to be moved towards the problematic areas of the model (Murphy J. et al.,
2008) and thus complexity rises up out of several factors:

i) Performance indices which need to be examined are basically
represented by numbers. Localizing the critical parts of software

 Problem Formulation 11

architecture cannot be done through a single performance index
as this is not enough (e.g. the utilization of a service). It is because
performance problem may arise only when other indices (e.g. the
throughput of a neighbor service) are analyzed.

ii) Granularity (e.g. the response time index can be evaluated at the level
of a CPU device, or at the level of a service that spans on different
devices) estimated at different levels for performance indices which
cannot remains under control at all level of abstraction.

iii) Emergence of software architectural models with complexity and
the origin of performance problems occur only on describing
the architectural elements with different views of a system (such
as static structure, dynamic behavior, deployment configurations,
etc.) (Vittorio Cortellessa et al. 2007).

2.2 PROCESS OF AUTOMATED SOFTWARE
PERFORMANCE

Figure 2.1 presents the feedback generation in regard to the results
interpretation through the first approach. Here the preliminary modeling
step is executed towards making performance anti patterns machine-
process able. This is represented in Figure 2.1 in the right most rounded
box in which anti patters are specified as logical predicates, Conditions
on architectural model elements (e.g. number of interactions among
components, resource utilization, etc.) is defined by such predicates and
allow to automate their detection. The researcher has organized/arranged
these architectural model elements in an XML Schema (Litoiu M.
et al., 2008).

Involvement of the introduction of a set of Boundaries in the
modeling of anti patters become necessary as they drive the interpret Tim
performance analysis result. It is because the thresholds, as they define
curable to be compared with the predicted values towards deciding the
performance critical elements of the software architectural model (Litoiu
M. et al., 2011). Logical predicates are the operational counterpart of
the anti patterns which state as the defecting step. Actually, the XML
representation of the software system and the anti patterns boundaries as
input while a list of performance anti patterns (Parsons T. and Murphy
J., 2008) instances, i.e. the description of the detected problems as well
as their solutions instantiated on the annotated software architectural
model is returned as output. The software designer receives such list as
feedback which aims at to remove the detected anti patterns (Smith C.U.
et al., 2003) as it consists a set of alternative re factoring actions, i.e. the
backward path shown in label 6 of Figure 2.1.

12 Refactoring of Software Architectural Design for Performance Optimization

The proposed formalization of performance anti patterns is not
combined with the detection engine which allows the implementation
of different types of engines without modifying the formalization
(Catia Trubiani, 2011).

2.3 PERFORMANCE PREDICTION USING MODELS

Usage of resources in system operations and resource contention affects
the operations, which can be described by the performance models. A
model with a special capability should be able to predict the properties
of a system before it is built, or the effect of a change before it is executed.
This “early warning” is given to early-cycle modeling during requirements
analysis. Proceeding through implementations create better models
which additional uses by other means, particularly,

• Design of performance tests
• Configuration of products for delivery
• Evaluation of planned evolutions of the design, recognizing that no

system is ever final.

Figure 2.4 Results Interpretation and Feedback Generation first approaches steps.

 Problem Formulation 13

2.3.1 Performance Model from Scenarios

Earlier creation of performance models are done from the intended
behavior of the system. These are the realizations exposed as scenarios
and these realizations are of Use Cases. Alternative paths, parallel paths
and repetition are inclusive of complex behavior, denoted by the term
“scenario”.

A perusing development of Annotated UML specifications include:

• Each scenario’s workload obtained from an arrival rate or
population with a think time between requests.

• The CPU demand of steps.
• The probabilities related to alternative paths, and loop counts.
• Steps associated with resources either in implicitly or explicitly.

(Former refers to the processes and processors).

In Figure 2.2, a set of applications towards requesting service from a
pool of server or thread running on a multiprocessor (deployment not
shown) is illustrated.

Part (a) reveals UML sequence diagram with SPT annotations through
the scenario model. (b) The scenario steps are represented and shown by
a graph. (c) The corresponding layered queuing network (LQN) model is
shown.

Figure 2.2 a) Annotated UML, b) Scenario Model, and c) Performance Model

14 Refactoring of Software Architectural Design for Performance Optimization

2.3.2 Performance based on Objects and Components

Viewing from a performance perspective and based on the software
objects, a performance model can be built. A “performance Abstract
Data type” is a pioneering contribution which is based on the machine
cycle executed by its methods. In order to create a performance model,
a response tracing from initiation should be taken a root object to all the
interfaces it calls, proceeding recursively for each call.

Based on the call frequencies between objects, Object-based modeling
becomes inherently compositional. This is extended to the composed
objects of subsystems with calls between subsystems. Describing an
existing application in terms of UNIX calls towards migration to a new
platform is evaluated by a synthetic benchmark. The object model created
by the study carried out composition and evaluation in the measurement
domain. The important direction for SPE (Software Performance
Engineering) is convergence of models and measurements.

The efforts of extending from development into system deployment
and management can be integrated into the Knowledge base, which
in turn can feed back into development increments (Greg Franks
et al., 1998).

2.4 ARCHITECTURAL DESCRIPTIONS FOR
TRANSFORMATION TOOL TO QN

This is a wide recognition for the importance of an integrated view
of functional and non-functional characteristics in the early stages of
software development. This is due to the creation of awareness of the
risks involved two classes of characteristics on two different classes of
system models which are inconsistent with each other, or arising out of
examining nonfunctional features at later stages of the development
cycle. Enhancing the quality of software systems is made possible by
the assessment of non-functional characteristics. E.g. many alternative
architectural designs can be developed for a given system which is
functionally correct.

In view of addressing various mentioned issues (Balsamo S.,
et al., 2003) a methodology has defined. The methodology, called as
PERFSEL (Aldini A. et al., 2010) with number of phases in which the
typical performance indices are assessed at the end of the phases. This
assessment is done in different scenarios for various architectural designs
both at the system level as well as at the component level. Decision
can be better regarding discarding some designs, improve others or
implement the select on the basis of those indices. Instead PERFSEL

 Problem Formulation 15

applies queuing networks. In contrast to continuous-time Markov
chains, flat performance models – queuing networks are structured
performance model stand as the main motivation. These models provide
support to establish a correspondence between constituent elements
and the components of architectural descriptions. Product – from
queuing networks and such families of queuing networks have the
efficient solution algorithms which do not require the construction of
the underlying state space. This occurs while calculating similar average
performance indices at system level or component level e.g. response
time, throughput, utilization, and queue length.

2.5 SUMMARY

In this chapter the automated generation of performance feedback
in software architectures was discussed. Data mining to the software
performance domain can be treated as an application, by performance
knowledge (Babar M.A. et al., 2007) organized for reasoning on
performance analysis results. Design choices and performance model
analysis results concepts around which it has been grouped acts as a data
repository, which is made possible to detect the performance of software
system. It is because they represent the source of concepts towards
identifying performance flaws and providing refactoring in terms of
architectural alternatives.

